SYLLABUS

FOR

M.Sc. CHOICE BASED CREDIT SYSTEM SEMESTER PATTERN IN

MICROBIOLOGY

RASHTRASANT TUKADOJI MAHARAJ

NAGPUR UNIVERSITY,

NAGPUR (M.S.)

INDIA

2015-2016

Onwards
SYLLABUS
FOR
M.Sc CHOICE BASED CREDIT SYSTEM IN MICROBIOLOGY SUBJECT, RASHTRASANT TUKADOJI MAHARAJ
NAGPUR UNIVERSITY,
NAGPUR (M.S.) INDIA

SEMESTER – I

CORE PAPER:

<table>
<thead>
<tr>
<th>Paper</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>MB1-T001</td>
<td>MICROBIAL METABOLISM (MM)</td>
</tr>
<tr>
<td>II</td>
<td>MB1-T002</td>
<td>ENZYMOLGY AND TECHNIQUES (ET)</td>
</tr>
<tr>
<td>III</td>
<td>MB1-T003</td>
<td>ADVANCE TECHNIQUES IN MICROBIOLOGY (ATM)</td>
</tr>
<tr>
<td>IV</td>
<td>MB1-T004</td>
<td>MEMBRANE STRUCTURE AND SIGNAL TRANSDUCTION (MSST)</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>Practical</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>MB1-LAB1</td>
</tr>
<tr>
<td>II</td>
<td>MB1-LAB2</td>
</tr>
</tbody>
</table>

SEMESTER – II

CORE PAPER:

<table>
<thead>
<tr>
<th>Paper</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>MB2-T005</td>
<td>MICROBIAL METHODS FOR ENVIRONMENT MANAGEMENT (MMEM)</td>
</tr>
<tr>
<td>II</td>
<td>MB2-T006</td>
<td>MICROBIAL METABOLITES (MMT)</td>
</tr>
<tr>
<td>III</td>
<td>MB2-T007</td>
<td>MEDICAL MICROBIOLOGY AND PARASITOLOGY (MMP)</td>
</tr>
<tr>
<td>IV</td>
<td>MB2-T008</td>
<td>IMMUNOLOGY AND IMMUNODIAGNOSTICS (IID)</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>Practical</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>MB2-LAB3</td>
</tr>
<tr>
<td>IV</td>
<td>MB2-LAB4</td>
</tr>
</tbody>
</table>

SEMESTER – III

CORE PAPER:

<table>
<thead>
<tr>
<th>Paper</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>MB3-T009</td>
<td>MOLECULAR BIOLOGY AND GENETICS (MBG)</td>
</tr>
<tr>
<td>II</td>
<td>MB3-T010</td>
<td>RECOMBINANT DNA TECHNOLOGY AND NANOBIO TECHNOLOGY (RDTN)</td>
</tr>
</tbody>
</table>

ELECTIVE PAPER:

<table>
<thead>
<tr>
<th>Paper</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>MB3-T011</td>
<td>ANY ONE OF THE FOLLOWING: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) MICROBIAL DIVERSITY, EVOLUTION AND ECOLOGY (MDEE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) BIOINFORMATICS (BIF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) DRUGS, VACCINES AND DELIVERY SYSTEMS (DVD)</td>
</tr>
<tr>
<td>IV</td>
<td>MB3-T012</td>
<td>FOUNDATION COURSE</td>
</tr>
</tbody>
</table>
PRACTICALS

- **PRACTICAL-V**: MB3-LAB5
- **PRACTICAL-VI**: MB3-LAB6

SEMESTER – IV

CORE PAPER:

- **PAPER-I**: MB4-T013 VIROLOGY (VIR)
- **PAPER-II**: MB4-T014 MICROBIAL FERMENTATION TECHNOLOGY (MFT)

ELECTIVE PAPER:

- **PAPER-III**: MB4-T015 ANY ONE OF THE FOLLOWING:
 1) MICROBIAL DIVERSITY, EVOLUTION AND ECOLOGY (MDEE)
 2) BIOINFORMATICS (BIF)
 3) DRUGS, VACCINES AND DELIVERY SYSTEMS (DVD)

- **PAPER-IV**: MB4-T016 FOUNDATION COURSE

PRACTICALS

- **PRACTICAL-VII**: MB4-LAB7
- **PROJECT WORK**: MB4-PROJ
UNIT-I: - Carbohydrate and Lipid
Carbohydrates as informational Molecules:-Sugar code, Plant Lectins: - ConA, GS4, WGA.
Reverse TCA cycle, Biosynthesis of cell wall polysaccharides and bacterial peptidoglycan.
Lipid: - Membrane lipids, biosynthesis of membrane phospholipids, ketone bodies.

UNIT-II: - Proteins and Nucleic acids
Proteins: - Determination and characteristics of alpha-helix and β-sheets. Concept of protein domain and motif, common motifs and their role in metabolism, protein folding and denaturation curves, role of Chaperones and chaperonins, Biosynthesis of all amino acids.
Nucleic acids: - Structural details of Duplex DNA, Unusual structures: palindrome, inverted repeats, mirror repeats, triplet DNA, G tetraplex, secondary structure of RNA purine and pyrimidine biosynthesis, degradation and regulation, salvage pathway, Inhibitors.

UNIT-III: - Photosynthesis
Anoxygenic photosynthesis: - Green sulphur bacterial, non-sulphur bacterial, purple phototrophic bacteria.
Oxygenic photosynthesis: - Cyanobacterial.
Bioluminiscence

UNIT-IV: - Nitrogen and Sulphur metabolism and methanogenesis.
Nitrification and Anammox. Nitrate reduction and Denitrification.
Methanogenesis, Acetogenesis, Acetate use and autotrophy.
UNIT-I: - Enzymes kinetics
Overview of Michaelis-Menten equation and its transformation, Evaluation of kinetic parameters, Kinetics of bisubstrate reaction, multistep reactions, kinetics of enzyme inhibition, Classification of enzymes

UNIT-II: - Catalytic mechanisms
Concept of active site, determination of active site, acid –base catalysis, covalent catalysis, metal ion cofactors, proximity and orientation effects, preferential binding.
Active site determination and mechanism of lysozyme, Active site determination and mechanism of serine protease.

UNIT-III: - Regulation of Enzyme activity
Allosterism, Kinetic analysis of allosteric enzymes
Covalent Modification, Feed -back inhibition
Membrane bound enzymes, isoenzymes and marker enzymes.
Constituitive and inducible enzymes.

UNIT-IV: - Techniques
Protein: ligand binding studies: association and dissociation constants, co-operative ligand binding MWC or concerted model, sequential model.
Enzyme biosensors: General concept, glucose biosensor. Industrial applications of enzymes. Protein engineering.
UNIT-I: - Biophysical Techniques-I
Determination of size, shape and Molecular weight of Macromolecules:- by Viscosity, CD/ORD, Light scattering, diffusion sedimentation and Centrifugation techniques.

UNIT-II: -Biophysical Techniques-II
Electrophoresis: Agarose Gel, SDS-page, two-dimensional gel electrophoresis, capillary electrophoresis, immune-electrophoresis.

UNIT-IV: -Other advance techniques
Blotting techniques: Western, southern, northern, Radioimmunoassay. NMR and its biological importance. Site-directed mutagenesis, transcriptional start point mapping.
UNIT-I: - Structure and organization of membranes
Mitochondria, endoplasmic reticulum, prokaryotic membrane, membrane junctions (Gap & tight junctions), techniques for membrane study: electron microscopic method, membrane vesicles, differential scanning colorimetry, florescencephotobleaching recovery, flow cytometry.

UNIT-II: - Membrane Transport
Active and Passive transport, uniport, ATP powered pumps, non-gated ion channels, cotransport by symporters and antiporters, transepithelial transport.

UNIT-III: - Signal Transduction
General concept of cell signaling, G-protein coupled receptors and their effectors. RTK and MAP Kinases.Down regulations of pathways. Cytokine receptors and their mechanism (JAK-STAT pathway).

UNIT-IV: - Bacterial signal transduction
PRACTICAL-I
MB1-LAB1
LABORATORY EXERCISE 1

1) Detection of enzyme activity of lipase, Urease, invertase, protease, Tween 80 hydrolysis.
2) Determination of kinetic constant of amylase: Amylase activity, Vmax, Km.
3) Effect of pH and temperature on amylase activity.
4) Effect of inhibitors on amylase activity.
5) Estimation of protein.
6) Production, isolation and purification of enzyme and determination of fold purification (any one enzyme)
7) Estimation of sucrose in presence of glucose.
8) UV absorption of proteins, DNA and RNA.
9) Estimation of L-leucine by colorimetric method.
10) Determination of pKa of an amino acid.
Minimum seven experiments must be performed in the semester.

PRACTICAL-II
MB1-LAB2
LABORATORY EXERCISE 2

1) Separation of DNA by agarose gel electrophoresis and estimation of DNA by Diphenylamine method.
2) Estimation of RNA by Orcinol method.
3) Separation of amino acids by paper chromatography.
4) Separation of serum proteins by paper electrophoresis.
5) Thin layer chromatography of mycotoxins
6) SDS-Page of proteins.
7) Performance of affinity chromatography.
8) Performance of Gel filtration chromatography.
9) Demonstration of blotting technique.[any one].
10) Ion exchange chromatography
Minimum seven experiments must be performed in the semester.
UNIT-I: - Eutrophication, Biodeterioration and Biomagnification
Eutrophication: Microbial changes induced by organic and inorganic pollutants, factors influencing eutrophication process and control of eutrophication.
Biodeterioration: Definition and concept of biodeterioration, biodeterioration of woods and pharmaceutical products.
Biomagnification: concept and consequences, Biomagnifications of chlorinated hydrocarbons and pesticides.

UNIT-II: - Biotransformation and Bioleaching, Biodegradation
Biotransformations: metals and metalloids, mercury transformations, biotransformation of pesticides such as hexachlorobenzene.
Bioleaching: Bioleaching of ores, leaching techniques and applications.
Biodegradation: Biodegradation of plastics.

UNIT-III: - Pollution Management
Waste water management using activated sludge, aerated lagoons, trickling filter, rotary biological contractors, fluidized bed reactors, stabilization ponds. Concept of phytoremediation and applications.

UNIT-IV: - Global Environmental Problems
Ozone depletion, UV-B, green house effect, acid rain, their impact and biotechnological approaches for management. Acid mine drainage and associated problems. Global warming and climate change.
UNIT-I: Overview of metabolites
Biopolymers: Polypeptides (collagen, casein and serum albumin), Polynucleotides and polysaccharides (amylose, amylopectin, alginate, cellulose) and other biopolymers like chitin, Xanthan, dextrin, Gellan, Pullulan, curdlan and hyluronic acid.

UNIT-II: Antimicrobial drugs: Secondary metabolites
Antibiotics: History and discovery of antibiotics, Antibiotic resistance, Mechanisms of antibiotic resistance.
Structure and mode of action of antibiotics:
Aminoglycosides (Amikacin), Carbapenems (Imipenim), microlids (Azithromycin), Nitrofuran (nitrofurantoin), Penicillin (Amoxicillin), Quinolones (gatifloxacin/Ciprofloxacin), Sulphonamides (sulfamethoxazole), Tetracyclines (doxycyclines), Chloramphenicol, Fucanazole.

UNIT-III: Pigments as secondary metabolites

UNIT-IV: Microbial vitamins
Characteristics of fats and water soluble vitamins.
Structure, function and chemistry of: Retinol (vitamin A), Riboflavin (vitamin B2), Cynocobalamine (Vitamin B12) and ascorbic acid (vitamin C).
Deficiency diseases in humans: Xerophthalmia, BeriBeri, Pellegra, Scurvey, Keratomalacia, osteoporosis, Osteomalacia, Cheilosis, Glossitis, Pernicious anemia and Erythroidhypoplasia.
UNIT-I: - Infection
Infection: Definition, Types, stages of infection, process of infection.
Establishment of pathogenic microorganisms: Entry, spread and tissue damage. Mechanism of bacterial adhesion, colonization and invasion of mucous membranes of respiratory, enteric and urogenital tracts. Aggresssins and toxins.

UNIT-II: - Bacteriology
Pathogenic Bacteria: Morphological characteristics, Pathogenesis and Laboratory diagnosis including rapid methods of following pathogenic bacteria;
Klebsiellapneumoniae; Proteus Vulgaris; Proteus mirabilis; Shigelladysenteriae
;*Pseudomonasaeruginosa; Vibrio Cholerae; Streptococcus pneumoniae*.
New emerging infections: -Streptococcus suis; community associated Methicilin resistant *Staphylococcus aureus*(MRSA), *Bordetellapertusis*, *Clostridium difficile*, *Multi drug resistant tuberculosis*.

UNIT-III: - Mycology
Pathogenic Fungi: Morphological characteristics, pathogenesis and laboratory diagnosis of following pathogenic fungi:-
Microsporum; Trichophyton; Histoplasmacapsulatum; Blastomycesdermatitidis; Candida albicans; Cryptococcus neoformans; Pneumocystis carinii.

UNIT-IV: - Parasitology
Parasites: *Entamoebahistolytica; Giardia Lamblia; Plasmodium vivax; Leishmaniadonovani.*
Helminths: *Taeniasaginata; Taeniasolium; Hymenolepis nana; Schitosomahaematobium.*
UNIT-I: - Overview of the Immune system and CMI
Cells involved in Immune system: Hematopoiesis, Lymphocytes, mononuclear phagocytes, Antigen presenting cells, Granulocytes.
Lymphoid organ: Lymphatic system, Primary and Secondary lymphoid organs.
Complement System: Pathways of complement activation, regulation of complement system, Biological functions of complement system.
Inflammation: Intracellular cell adhesion molecules, Mechanism of cell migration, Inflammation. Pathways of antigen processing and presentation.
Cell Mediated Immunity: General properties of effector T cells, Cytotoxic T Cells, Natural Killer cells, Antibody-Dependent cell mediated cytotoxicity. T-Cell dependent and T-cell independent defense mechanisms.

UNIT-II: - Specific Immune Response
Cancer and the Immune system: Origin and Terminology, Malignant Transformation of cells, oncogenes and cancer induction, Tumor Antigens, Immune surveillance theory, Tumor evasion of the Immune system, Cancer Immunotherapy.
Tolerance: Central and peripheral tolerance to self antigens, Mechanism of induction of natural tolerance.

UNIT-III: - Immune Dysfunction
Immunodeficiency disorders: Phagocytic cell defect (Chediak-Higashi syndrome); B-cell deficiency (Bruton’s X-linked hypogammaglobulinemia); T-cell deficiency disorder (DiGeorge Syndrome); Combined B-cell & T-cell deficiency disorder (SCID-Severe combined immunodeficiency diseases, Wiskott-Aldrich syndrome); Complement deficiencies and secondary immunodeficiency conditions carried by drugs, nutritional factors & AIDS.
Autoimmunity and autoimmune diseases: General consideration, Etiology, Clinical categories, Diagnosis and treatment. RA(Rheumatoid arthritis); SLE (Systemic Lupus Erythematosus); Guillain-Barre Syndrome; Multiple sclerosis; Myasthenia gravis; Grave’s disease; Goodpasture syndrome, Autoimmune haemolytic disease; Pernicious anaemia.
Hypersensitivity: Type I, Type II, Type III & Type IV

UNIT-IV: - Immunodiagnostics
Precipitation reactions: Immunodiffusion, immunoalectrophoresis,
Agglutination reactions: Bacterial Agglutination, Hemagglutination, Passive agglutination, Reverse passive agglutination and agglutination inhibition.
Immunodiagnostic techniques: Radioimmuno assay, ELISA, Chemiluminescenceimmuno assay, Western blotting technique, Complement fixation test, Immunofluorescene, Immunoelectron microscopy.
PRACTICAL-III
MB2-LAB3
LABORATORY EXERCISE 3

1) Different staining:
Acid fast staining,
Giemsa staining,
Leishmann staining,
Flurochrome staining
Special staining methods to demonstrate granules, capsule and spores.
2) Isolation of pathogens from clinical samples pus, blood and urine.
3) Conventional and rapid methods of isolation and identification of following pathogenic bacteria, fungi and parasites.

Bacteria: Staphylococcus aureus; Escherichia coli; Klebsella pneumonia; Proteus vulgaris; Proteus mirabilis; Salmonella typhi; Salmonella paratyphi; Shigelladyentia; Shigella flexneri; Pseudomonas aeruginosa; Vibrio cholera. [Any five]

Fungi: Candidaalbicans; Cryptococcus neoformans; Microsporum; trichophyton;
Histoplasms capsulatum. [Any one]

Parasite: Entamoebahistolytica, Girdialamblia, Plasmodiumsp; Trichomonas vaginalis; Taeniasolium; Taeniasaginata [Any one].

4) Antibiotic sensitivity testing by various methods:
Kirby-Bauer’s disc diffusion method.
Well plate method.
Broth dilution method.
Agar dilution method.
E-strip method for MIC testing.

PRACTICAL-IV
MB2-LAB 4
LABORATORY EXERCISE 4

Diagnostic immunologic principles and methods of followings:
Immunodiffusion
Immunoelectrophoresis
Blood grouping
Widal[slide and tube] tests.
TRUST[Toludine red unheated serum test]
Syphcard test
Australian latex antigen test.
Antistreptolysin ‘o’test[ASO]
Pregnancy test.
Rheumatoid arthritis test[R]A
RPR[rapid plasma reagin] test.
Treponememapallidumhaemagglutination test.
One step test for Qualitative detection of HBs.
ELISA[Enzyme linked immunosorbent assay]-HIV and HBs.
Separation and characterization of lymphocytes from blood and demonstration of lymphocyte population.
UNIT-I: - Replication Repair and Recombination
Replication:- Initiation-Priming in E.Coli and Eukaryotes.
Elongation:- Holoenzyme and processivity of replication.
Termination:- In prokaryotes and eukaryotes.
DNA Repair:- Direct reversal of DNA damage, Base excision repair by nucleotide excision.
Homologous recombination:- Rec BCD; gene conversion.

UNIT-II: - Gene Expression
Transcription:- Comparative study of prokaryotic and eukaryotic transcription process, Class I, II, III promoters, Enhancers and silencers, General and specific transcription factors.
Post transcriptional events:- mRNA, rRNA and tRNA processing through splicing mechanism, trans splicing, RNA editing, post transcriptional control of gene expression, gene silencingly RNA interference, Catalytic RNA and antisense RNA.
Translation:- Initiation, elongation and termination mechanism. Post translational modifications.

UNIT-III: - Gene Regulation Expression
Lac, Arabino andtrp operons.
Chromatin remodeling and mRNA and protein degradation control.

UNIT-IV: - Genetics of Bacteria and Bacteriophages
Gene mapping in bacteria by conjugation, transformation and transduction.
Mapping bacteriophage gene by recombination analysis, deletion mapping and complementation.
Transposons: Bacterial, P elements and retroposons
UNIT-I: - Molecular Cloning Methods.
DNA cloning, restriction enzymes, cloning vectors, genomic library, cDNA library and chromosome libraries.
Screening and identification of genes, Expression vectors, heterologous probes, oligonucleotide probes, microarrays.
PCR: Steps, advantages, limitations, application, RT-PCR,

UNIT-II: - Other molecular tools for studying genes
Restriction mapping: DNA sequencing dideoxy and pyrosequencing, DNA fingerprinting.
S1 Mapping, primer expressions, Dnasefootprinting, DMS footprinting.
Nuclear run on transcription, reporter gene transcription.

UNIT-III: - Tissue Culture and stem cell technology
Tissue culture: Tissue culture media and supplements, serum-free media, cell lines and cryopreservation of cells. Primary culture, subculture, suspension culture techniques, transformation and immortalization. Quantitation and characterization of cells.
Stem cell technology - embryonal stem cell and multipotent stem cells, present perspective.

UNIT-IV: - RDT Products.
Tissue plasminogen activator [TPA]. Tissue growth factor B. Dnase; PDGF.
GEMS/GMO.
Transgenic plants and plant products, Comparative account, Concept of nano biotechnology and its application.
UNIT-I: - Microbial Evolution and Systematic
Evolution of Earth and early life forms.
Primitive life forms: RNA world, molecular coding, energy and carbon metabolism, origin of Eukaryotes, endosymbiosis.
Methods for determining evolutionary relationships: Evolutionary chronometers, Ribosomal RNA sequencing, signature sequences, phylogenetic probes, microbial community analysis.
Derivation of Microbial Phylogeny: characteristics of domain of life, classical taxonomy, chemotaxonomy, bacterial speciation.

UNIT-II: -Microbial Diversity: Archea
General Metabolism and Autotrophy in archea
Phylum Euryarchaeota: Halophilicarchaea, methanogens, thermoplasma.
Phylum Crenarchaeota: Energy metabolism, Thermoproteales, sulfolobales, desulfolobales.
PhylumNanoarchaeota: Nanoarchaeum.
Heat stable biomolecules and extremophiles, Evolutionary significance of hyperthermophiles.

UNIT-III :-Microbial Diversity: Bacteria
Phylum Proteobacteria: Free living N2 fixing bacteria, purple phototrophic bacteria nitrifying bacteria, sulphur and iron oxidizing bacteria, sulphate and sulphur reducing bacteria.
Phylum prochlorophytes and cyanobacteria,
Phylum:Planctomyces,
Phylum;Verrucomicrobia.

UNIT-IV :- Microbial Diversity.
Phylum: Green non –sulfur bacteria.
Phylum: Branching Hyperthermophiles, Thermotoga and Aquifex.
Phylum: Nitrospira and Deferrribacter.
UNIT-I: -

UNIT-II: -
Database types, levels of omics, genome projects.
C-value paradox, reassociation kinetics.
Data researches and pairwise alignments:
Dot Plots, Simple alignments, Dynamic programming global and local alignments
BLAST, FASTA, Scoring matrices, and alignment scores. Multiple sequence alignments. Pattern of substitution within genes, substitution number estimations, molecular clocks.

UNIT-III: - Phyllogenetics
Phylogenetic trees, Pair wise alignment, distance matrix method, maximum likelihood approach, multiple sequence analysis,
Parsimony, Inferred ancestral sequence, consensus tree, comparison of phyllogenetic methods.

UNIT-IV: - Genomics and Gene recognition
Prokaryotes genomes, prokaryotic gene structure GC content prokaryotic gene density, eukaryotic genomes, eukaryotic gene structure, ORF, GC content expression, Tranposition, Repetitive elements, gene density.
UNIT-I: -
Drug latentiation and Prodrug: History, carrier-linked prodrugs, bioprecursorsprodrugs, carboxylic acids and alcohols, amines, carboxyl compounds.
Drug-microbe: Host relationship, mechanism of drug action and drug resistance.

UNIT-II:-
Antiinfective agents: Iodophores (providone-iodine), Benzyalkonium chloride, genital violet, mercury compounds.
Antifungal agents: Clotrimazole, Ketoconazole, Tolnaftate, Amphotericin B, Nystatin, Grisofulvin.
Antitubercular agents: Isoniazid, Ethambutol, rifamycin, cycloserine.

UNIT-III: -
Antiprotozoal agent: Metranidazole, 8-hydroxyquinoline
Antimalarial: Quininesulphate, Chloroquine, Primaquine phosphate, Pyrimethamine.

UNIT-IV:-
Histamines and Antihistaminic agents: Cimetidine, Ramitidine, Omeprazole.
Analgesic agents: Morphine and their derivatives anti-inflammatory analgesics-Phenylbutazoneamdoxyphenbutazone, Prostaglandins.
PRACTICAL-V
MB3-LAB 5
LABORATORY EXERCISE 5

1) Isolation of genomic DNA of bacteria.
2) Isolation of plasmid DNA.
3) Amplification of DNA by PCR.
4) Restriction digestion and RFLP
5) Demonstration of bacterial transformation.
6) Demonstration of cloning
7) Demonstration of UV induced mutagenesis in *E.coli*.
8) Demonstration of ligation.

PRACTICAL-VI
MB3-LAB 6
LABORATORY EXERCISE 6

1) Preparation of plant tissue culture media.
2) Growth of Callus.
3) Preparation of animal tissue culture medium.
4) Maintenance of Cells in Animal Tissue Culture medium.
5) Microscopic observation of cultured cells.
UNIT-I: - History, Classification and composition of viruses
Brief outline on discovery of viruses (Origin and evolution), Terminology, Differentiation with other groups of microorganisms.
Genetic classification
Morphology and structure of viruses (size and shape/symmetry).
Chemical composition of viruses (viral capsid, spikes, envelopes and types of viral nucleic acids).
Assay of Viruses.

UNIT-II:-Bacterial viruses
Bacteriophages- Structural organization; life cycle (Extracellular phase; attachment, penetration of nucleic acid, transcription, translation, replication, maturation and release of phage particles) of ФX174,T4,lambda, M\textsubscript{13} and M\textsubscript{1Phages}.Bacteriophage typing, One step growth curve.

UNIT-III:-Animal and Plant viruses
Life cycle, pathogenesis and laboratory diagnosis of following viruses.
Animal Viruses:-
RNA viruses:Picorna, Orthomyxo, Rhabdovirus and HIV.
DNA viruses: Pox, Herpes, Adeno and Hepatitis viruses.
Oncogenic viruses: Papova viruses, EB virus, HTLV viruses.
Plant virus:TMV, Cauliflower mosaic virus, potato virus.

UNIT-IV:-General methods of Diagnosis and antiviral drugs
Serological methods: -Haemadsorption; Haemadsorption inhibition; haemagglutination;
Haemagglutination inhibition(HAI);Complement fixation,Imunofluroscene methods. ELISA and Radioimmunoassays(RIA).
Antiviral agents: Types of IFN, induction and Molecular basis of antiviral effect of interferon
Structure and Mechanism of action of:
Amantadine,Rimantidine,Vidarabine,Acyclovir,Ganciclovir,Ribavirin,Foscarnet, Stavudine, Lamivudine.
NNRTIS(non-nucleoside RT inhibitors)-Nevirapine; Delavirdine and Efavirenz.
Protease inhibitors-Saquinavir, Indinavir and Ritonavir.
UNIT-I: General Principles of Fermentation

Bioreactors: Bioreactor types, immobilized bioreactors, types of fermentation.

UNIT-II: Downstream Processing and scale up.

Downstream processes: types of processing units and systems, Storage and packaging methods.

Scale up: scale down, criteria involved in scale up.

Productivity, power requirements Basic control theory.

UNIT-III: Industrial Fermentation Products

Biofuels: Ethanol, Hydrogen, Methane

Antibiotics: β-lactum antibiotics (Synthetic penicillin), Streptomycin, Cephalosporin.

UNIT-IV: Food and Healthcare products

SCP, various types and processes. Carotenoids

Aminoacids: Lysine, Glutamic acid.

SEMESTER - IV
Paper –III
CORE ELECTIVE
Microbial Diversity, Evolution and Ecology (MDEE)

MB4-T015

UNIT-I: - Microbial Ecosystems

UNIT-II: - Diversity, stability and succession
Diversity indices, dominance indices, information statistics indices, Shannon index, Brillouin Index, Rank abundance diagrams, community similarity analysis, Jaccard Coefficient, Sorensen coefficient, cluster analysis. Community stability, stability hypothesis, Intermediate-disturbance hypothesis.
Meaning of succession: Tolerance and inhibition patterns of succession, theories of succession.

UNIT-III: - Ecology and Genetics
Genetic structure of population:- Genotype frequency, allele frequencies.
Hardy-Weinberg Law: - Assumptions, predictions, derivation, extension and natural selection.
Measuring genetic variation at protein level, measuring genetic variation at DNA level.
Factors effecting gene frequencies:-Mutation, Random genetic drift, migration, Hardy-Weinberg natural selection, Assortative mating, Inbreeding.

UNIT-IV: - Interactions and Ecosystem Management
Microbial Interactions: Competetion and coexistence, Gause hypothesis, syntrophy, commensalism and Mutualism, predation, parasitism, and antagonism, Interaction with plants and animals.
Concept of sustainable development: microbial technology and sustainable development.
Management and improvement of waste land/barren land.
Oil spills, damage and management petroleum and oil shore management.
UNIT-I: -
Data Mining- Definition, data mining problems, cluster analysis, data mining techniques and tools, data mining methods.

UNIT-II: -
Structure of proteins- primary, secondary, tertiary, quaternary. Protein motifs and folding, protein folding modeling, protein structure prediction.

UNIT-III: -
Structure of RNA, secondary structure of RNA, types of RNA, RNA structure prediction.

UNIT-IV: -
Insilico drug designing, insilico inhibitors designing, empirical methods of ligand screening, prediction techniques, post translational modification prediction.
UNIT-I: - Vaccines
Definition and discovery of vaccines.
Active and passive prophylactic measures.
Conventional bacterial and viral vaccines and their administration.

UNIT-II: -
New generation vaccines (bacterial, viral) Edible vaccines.

UNIT-III: -
Conventional drug delivery systems. Advance delivery mechanisms. Drug designing.

UNIT-IV: -
Non-automated in vitro drug susceptibility testing.
Rapid tests for susceptibility testing, and antibiotic assay in body fluid
PRACTICAL-VII
MB4-LAB 7
LABORATORY EXERCISE 7

Isolation of viruses from water sources.
Chick embryo cultivation of virus
Production of penicillin in lab and its estimation.
Determination of microbial reaction kinetics for an inhibitory substrate in a fed batch system.
Determination of the parameters of oxygen transfer.
Immobilization of cells/Enzymes.
UNIT-I: -
Morphology of bacteria, fungi, protozoa and algae. Gram staining, acid fast staining and endospore staining. Synthetic and non synthetic media, autoclave and its application in sterilization.

UNIT-II: -
Basic nutritional requirements, nutritional classifications, determination of basic nutritional requirements, bacterial growth curve, factors determining bacterial growth. Determination of bacterial growth.

UNIT-III: -
Control of bacteria- microbiostatic and microbicidal agents, physical techniques for control of bacteria, chemical techniques for control of bacteria, antibiosis and common antibiotic agents.

UNIT-IV: -
Bacteriological analysis of water- MTFT, Membrane filter technique, MPN, Basic water treatment process for generation of portable water, definition of waste water, waste water treatment process.
FOUNDATION COURSE IN MICROBIOLOGY
SEMISTER- IV
ADVANCE MICROBIOLOGY

UNIT-I: -
Industrially important micro organisms, typical fermentor and layout of fermentation plant, batch and continuous processes, kinetics of fermentation.

UNIT-II: -
Industrial production of ethanol, penicillin, lysine, vit.B12, acetone butanol, vinegar, alcoholic beverages including beer, wine, whiskey, rum, vodka and gin.

UNIT-III: -
Agriculturally important micro organisms, mycorriza, phosphate solubilizing bacteria, biofertilizers, biopesticides, composting and its applications.

UNIT-IV: -
Medically important pathogenic bacteria and viruses, diseases of respiratory tract, gastro intestinal tract, urino genital tract, diseases of brain and central nervous system. Active and passive immunity and immunization process.